Scaling Theory for the Process Zone of Quasibrittle Materials

Jaron Kent-Dobias1 James Sethna1
Ashivni Shekhawat2

1Cornell University
2UC Berkeley

14 March 2016
we use RG ideas to model the scaling of stress and damage near a disordered crack, or in the crack’s *process zone*

developing a numerical strategy using 2D fuse networks with variable boundary conditions
Introduction
Fracture Mechanisms in Concrete

- mechanism of fracture is size-dependent
- stress relief at crack tip by nonlinear process zone characterized by microcracking
- no consistent geometry-independent characterization of material strength
Introduction
Fracture Mechanisms in Fuse Networks

- fuse network: diamond grid of equally resistive fuses with failure threshold cumulatively distributed as x^β

$\beta = 3.00$ $\beta = 0.03$
Shekhawat and collaborators found smooth crossover transition between two mechanisms characterized by mean-field avalanches scaling percolation fixed point at infinite disorder unstable, any finite disorder flows to zero-disorder, nucleation-like fixed point however, crossover size is typically extremely large
Studying the Process Zone

The Problem

- stress analysis dominated by finite-size effects
- those effects become far more important with greater disorder
Studying the Process Zone

The Problem

- stress analysis dominated by finite-size effects
- those effects become far more important with greater disorder
Studying the Process Zone

The Problem
Studying the Process Zone

The Problem
Studying the Process Zone

The Problem
Studying the Process Zone
The Linear Elastic Fixed Point

- After many (500 in blue) iterations, the stress asymptotically approaches the linear elastic result.
- At zero disorder ($\beta = \infty$), linear elastic theory is a fixed point on an infinite lattice.
Studying the Process Zone
Probing the Disordered Region

- the linear elastic theory is unstable to disorder
- rescaling inward for finite disorder should rescale β towards $\langle \sigma \rangle \sim$ constant, $\beta = 0$ fixed point
Studying the Process Zone

Open Questions

- how to self-consistently scale β?
- should β scale with the same exponent as it does for finite-size scaling as found by Shekhawat?
- what happens when you consider a realistically rough crack?
Questions?